Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 215(0): 439-451, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31237602

RESUMO

This paper follows on from the Concluding Remarks presentation of the 3rd Faraday Discussion Meeting on Artificial Photosynthesis, Cambridge, UK, 25-27th March 2019. It aims to discuss the context for the research discussed at this meeting, starting with an overview of the motivation for research on artificial photosynthesis. It then goes onto analysing the composition and trends in the field of artificial photosynthesis, and its scale relative to other related research areas, primarily using the results of searches of publication databases. As such, we hope it provides helpful insights to researchers in the field.

2.
J Am Chem Soc ; 141(11): 4634-4643, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807130

RESUMO

Despite performance improvements of organic photovoltaics, the mechanism of photoinduced electron-hole separation at organic donor-acceptor interfaces remains poorly understood. Inconclusive experimental and theoretical results have produced contradictory models for electron-hole separation in which the role of interfacial charge-transfer (CT) states is unclear, with one model identifying them as limiting separation and another as readily dissociating. Here, polymer-fullerene blends with contrasting photocurrent properties and enthalpic offsets driving separation were studied. By modifying composition, film structures were varied from consisting of molecularly mixed polymer-fullerene domains to consisting of both molecularly mixed and fullerene domains. Transient absorption spectroscopy revealed that CT state dissociation generating separated electron-hole pairs is only efficient in the high energy offset blend with fullerene domains. In all other blends (with low offset or predominantly molecularly mixed domains), nanosecond geminate electron-hole recombination is observed revealing the importance of spatially localized electron-hole pairs (bound CT states) in the electron-hole dynamics. A two-dimensional lattice exciton model was used to simulate the excited state spectrum of a model system as a function of microstructure and energy offset. The results could reproduce the main features of experimental electroluminescence spectra indicating that electron-hole pairs become less bound and more spatially separated upon increasing energy offset and fullerene domain density. Differences between electroluminescence and photoluminescence spectra could be explained by CT photoluminescence being dominated by more-bound states, reflecting geminate recombination processes, while CT electroluminescence preferentially probes less-bound CT states that escape geminate recombination. These results suggest that apparently contradictory studies on electron-hole separation can be explained by the presence of both bound and unbound CT states in the same film, as a result of a range of interface structures.

3.
Energy Environ Sci ; 9(12): 3783-3793, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28066506

RESUMO

Optimization of the energy levels at the donor-acceptor interface of organic solar cells has driven their efficiencies to above 10%. However, further improvements towards efficiencies comparable with inorganic solar cells remain challenging because of high recombination losses, which empirically limit the open-circuit voltage (Voc) to typically less than 1 V. Here we show that this empirical limit can be overcome using non-fullerene acceptors blended with the low band gap polymer PffBT4T-2DT leading to efficiencies approaching 10% (9.95%). We achieve Voc up to 1.12 V, which corresponds to a loss of only Eg/q - Voc = 0.5 ± 0.01 V between the optical bandgap Eg of the polymer and Voc. This high Voc is shown to be associated with the achievement of remarkably low non-geminate and non-radiative recombination losses in these devices. Suppression of non-radiative recombination implies high external electroluminescence quantum efficiencies which are orders of magnitude higher than those of equivalent devices employing fullerene acceptors. Using the balance between reduced recombination losses and good photocurrent generation efficiencies achieved experimentally as a baseline for simulations of the efficiency potential of organic solar cells, we estimate that efficiencies of up to 20% are achievable if band gaps and fill factors are further optimized.

4.
Proc Natl Acad Sci U S A ; 107(38): 16448-52, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20823262

RESUMO

A key challenge for organic electronics research is to develop device models that correctly account for the structural and energetic disorder typically present in such materials. In this paper we report an approach to analyze the electrical performance of an organic electronic device based upon charge extraction measurements of charge densities and transient optoelectronic measurements of charge carrier dynamics. This approach is applied to a poly(3-hexyl thiophene) (P3HT)/6,6 phenyl C61 butyric acid methyl ester (PCBM) blend photovoltaic device. These measurements are employed to determine the empirical rate law for bimolecular recombination losses, with the energetic disorder present in the materials being accounted for by a charge-density-dependent recombination coefficient. This rate law is then employed to simulate the current/voltage curve. This simulation assumes the only mechanism for the loss of photogenerated charges is bimolecular recombination and employs no fitting parameters. Remarkably the simulation is in good agreement with the experimental current/voltage data over a wide range of operating conditions of the solar cell. We thus demonstrate that the primary determinant of both the open-circuit voltage and fill factor of P3HT:PCBM devices is bimolecular recombination. We go on to discuss the applicability of this analysis approach to other materials systems, and particularly to emphasize the effectiveness of this approach where the presence of disorder complicates the implementation of more conventional, voltage-based analyses such as the Shockley diode equation.

5.
Inorg Chem ; 44(2): 178-80, 2005 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-15651860

RESUMO

A novel ligand 4,4'-bis(carboxyvinyl)-2,2'-bipyridine (L) and its ruthenium(II) complex [Ru(II)L(2)(NCS)(2)] (K8) were synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The performance of the K8 complex as a charge transfer photosensitizer in nanocrystalline TiO(2) based solar cells was studied. When the K8 complex anchored onto a nanocrystalline TiO(2) film, we achieved very efficient sensitization yielding 77 +/-5% incident photon-to-current efficiencies (IPCE) in the visible region using an electrolyte consisting of 0.6 M methyl-N-butyl imidiazolium iodide, 0.05 M iodine, 0.05 M LiI, and 0.5 M 4-tert-butylpyridine in a 50/50 (v/v) mixture of valeronitrile and acetonitrile. Under standard AM 1.5 sunlight, the complex K8 gave a short circuit photocurrent density of 18 +/- 0.5 mA/cm(2), and the open circuit voltage was 640 +/- 50 mV with fill factor of 0.75 +/- 0.05, corresponding to an overall conversion efficiency of 8.64 +/- 0.5%.

6.
J Phys Chem B ; 109(23): 11693-6, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16852435

RESUMO

The recombination kinetics of photogenerated charge carriers in perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) and copper phthalocyanine (CuPc) thin films grown by organic molecular beam deposition have been studied using transient absorption spectroscopy. Optical excitation is observed to generate long-lived polaron states, which exhibit power law recombination dynamics on time scales from microseconds to milliseconds. Studies as a function of excitation density and temperature, and comparison between heterostructures and PTCDA single layers, all indicate that this power law behavior results from trapping of PTCDA- polarons in localized states, with an estimated trap state density of approximately 6 x 10(17) polarons cm(-3). This recombination behavior is found to be remarkably similar to that previously observed for polymer/fullerene blends, suggesting that it may be generic to a range of semiconducting materials.

7.
Biochemistry ; 40(13): 4026-34, 2001 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11300783

RESUMO

We present a systematic study of the effect of antenna size on energy transfer and trapping in photosystem II. Time-resolved fluorescence experiments have been used to probe a range of particles isolated from both higher plants and the cyanobacterium Synechocystis 6803. The isolated reaction center dynamics are represented by a quasi-phenomenological model that fits the extensive time-resolved data from photosystem II reaction centers and reaction center mutants. This representation of the photosystem II "trapping engine" is found to correctly predict the extent of, and time scale for, charge separation in a range of photosystem II particles of varying antenna size (8-250 chlorins). This work shows that the presence of the shallow trap and slow charge separation kinetics, observed in isolated D1/D2/cyt b559 reaction centers, are indeed retained in larger particles and that these properties are reflected in the trapping dynamics of all larger photosystem II preparations. A shallow equilibrium between the antennae and reaction center in photosystem II will certainly facilitate regulation via nonphotochemical quenching, and one possible interpretation of these findings is therefore that photosystem II is optimized for regulation rather than for efficiency.


Assuntos
Clorofila/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cianobactérias , Grupo dos Citocromos b/química , Transferência de Energia , Cinética , Complexos de Proteínas Captadores de Luz , Modelos Químicos , Complexo de Proteína do Fotossistema II , Porfirinas/química
8.
Faraday Discuss ; (116): 35-46; discussion 67-75, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11197489

RESUMO

We have investigated the use of nanoporous TiO2 films as substrates for protein immobilisation. Such films are of interest due to their high surface area, optical transparency, electrochemical activity and ease of fabrication. These films moreover allow detailed spectroscopic study of protein/electrode electron transfer processes. We find that protein immobilisation on such films may be readily achieved from aqueous solutions at 4 degrees C with a high binding stability and no detectable protein denaturation. The nanoporous structure of the film greatly enhances the active surface area available for protein binding (by a factor of up to 850 for an 8 microns thick film). We demonstrate that the redox state of proteins such as immobilised cytochrome-c (Cyt-c) and haemoglobin (Hb) may be modulated by the application of an electrical bias potential to the TiO2 film, without the addition of electron transfer mediators. The binding of Cyt-c on the TiO2 films is investigated as a function of film thickness, protein concentration, protein surface charge and ionic strength. We demonstrate the potential use of immobilised Hb on such TiO2 films for the detection of dissolved CO in aqueous solutions. We further show that protein/electrode electron transfer may be initiated by UV bandgap excitation of the TiO2 electrode. Both photooxidation and photoreduction of the immobilised proteins can be achieved. By employing pulsed UV laser excitation, the interfacial electron transfer kinetics can be monitored by transient optical spectroscopy, providing a novel probe of protein/electrode electron transfer kinetics. We conclude that nanoporous TiO2 films may be useful both for basic studies of protein/electrode interactions and for the development of novel bioanalytical devices such as biosensors.


Assuntos
Proteínas/química , Titânio/química , Adsorção , Eletrodos , Oxirredução , Fotoquímica , Propriedades de Superfície
9.
Biochemistry ; 37(50): 17439-47, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9860859

RESUMO

Pigment-protein interactions play a significant role in determining the properties of photosynthetic complexes. Site-directed mutants of Synechocystis PCC 6803 have been prepared which modify the redox potential of the primary radical pair anion and cation. In one set of mutants, the environment of P680, the primary electron donor of Photosystem II, has been modified by altering the residue at D1-His198. It has been proposed that this residue is an axial ligand to the magnesium cation. In the other set, the D1-Gln130 residue, which is thought to interact with the C9-keto group of the pheophytin electron acceptor, has been changed. The effect of these mutations is to alter the free energy of the primary radical pair state, which causes a change in the equilibrium between excited singlet states and radical pair states. We show that the free energy of the primary radical pair can be increased or decreased by modifications at either the D1-His198 or the D1-Gln130 sites. This is demonstrated by using three independent measures of quantum yield and equilibrium constant, which exhibit a quantitative correlation. These data also indicate the presence of a fast nonradiative decay pathway that competes with primary charge separation. These results emphasize the sensitivity of the primary processes of PS II to small changes in the free energy of the primary radical pair.


Assuntos
Mutagênese Sítio-Dirigida , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Alanina/genética , Ânions/metabolismo , Cátions/metabolismo , Cianobactérias , Transporte de Elétrons/genética , Radicais Livres/metabolismo , Glutamina/genética , Complexos de Proteínas Captadores de Luz , Fotoquímica , Fótons , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema II , Teoria Quântica , Análise Espectral/métodos , Fatores de Tempo
10.
Anal Chem ; 70(23): 5111-3, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21644690

RESUMO

We have investigated the use of optically transparent, nanoporous TiO(2) films as substrates for protein immobilization. Immobilization on such films may be readily achieved from aqueous solutions at 4 °C. The nanoporous structure of the film greatly enhances the active surface area available for protein binding (by a factor of 150 for a 4-µm-thick film). We demonstrate that the redox state of immobilized cytochrome c may be modulated by the application of an electrical bias potential to the TiO(2) film and that the fluorescence yield of immobilized fluorophore-labeled maltose-binding protein may be used to monitor specifically maltose concentration. We conclude that nanoporous TiO(2) films may be useful both for basic studies of protein/electrode interactions and for the development of array-based bioanalytical devices employing both optical and electrochemical signal transduction methodologies.

11.
J Biol Chem ; 271(4): 2093-101, 1996 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-8567665

RESUMO

We compare primary charge separation in a photosystem II reaction center preparation isolated from a wild-type (WT) control strain of the cyanobacterium Synechocystis sp. PCC 6803 and from two site-directed mutants of Synechocystis in which residue 130 of the D1 polypeptide has been changed from a glutamine to either a glutamate (mutant D1-Gln130Glu), as in higher plant sequences, or a leucine residue (mutant D1-Gln130Leu). The D1-130 residue is thought to be close to the pheophytin electron acceptor. We show that, when P680 is photoselectively excited, the primary radical pair state P680+Ph- is formed with a time constant of 20-30 ps in the WT and both mutants; this time constant is very similar to that observed in Pisum sativum (a higher plant). We also show that a change in the residue at position D1-130 causes a shift in the peak of the pheophytin Qx-band. Nanosecond and picosecond transient absorption measurements indicate that the quantum yield of radical pair formation (phi RP), associated with the 20-30-ps component, is affected by the identify of the D1-130 residue. We find that, for the isolated photosystem II reaction center particle, phi RP higher plant > phi RP D1-Gln130Glu mutant > phi RP WT > phi RP D1-Gln130Leu mutant. Furthermore, the spectroscopic and quantum yield differences we observe between the WT Synechocystis and higher plant photosystem II, seem to be reversed by mutating the D1-130 ligand so that it is the same as in higher plants. This result is consistent with the previously observed natural regulation of quantum yield in Synechococcus PS II by particular changes in the D1 polypeptide amino acid sequence (Clark, A.K., Hurry, V. M., Gustafsson, P. and Oquist, G. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11985-11989).


Assuntos
Cianobactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Cianobactérias/genética , Cinética , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Análise Espectral , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 92(11): 4798-802, 1995 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-11607546

RESUMO

We consider a model of the photosystem II (PS II) reaction center in which its spectral properties result from weak (approximately 100 cm-1) excitonic interactions between the majority of reaction center chlorins. Such a model is consistent with a structure similar to that of the reaction center of purple bacteria but with a reduced coupling of the chlorophyll special pair. We find that this model is consistent with many experimental studies of PS II. The similarity in magnitude of the exciton coupling and energetic disorder in PS II results in the exciton states being structurally highly heterogeneous. This model suggests that P680, the primary electron donor of PS II, should not be considered a dimer but a multimer of several weakly coupled pigments, including the pheophytin electron acceptor. We thus conclude that even if the reaction center of PS II is structurally similar to that of purple bacteria, its spectroscopy and primary photochemistry may be very different.

13.
Proc Natl Acad Sci U S A ; 92(7): 2929-33, 1995 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-11607522

RESUMO

A reaction center of photosystem II was isolated from Pisum sativum by using immobilized metal affinity chromatography. This reaction center is photochemically active and has a room temperature Qgamma chlorophyll (Chl) absorption band peaking at 677.5 nm. From HPLC analysis, the pigment stoichiometry was suggested to be 5 Chls per 1 beta-carotene per 2 pheophytins. Low-temperature absorption measurements at 77 K were consistent with the removal of one of the Chls associated with the usual form of the reaction center isolated by using ion-exchange chromatography. Transient absorption spectroscopy on the picosecond time scale indicated that the Chl removed belongs to a pool of Chl absorbing at approximately 670 nm (C670II) that transfers energy relatively slowly to the primary donor P680 in support of our recently proposed model. The results also support the previous conclusion that radical pair formation is largely associated with a 21-ps time constant when P680 is directly excited and that the identity of C670II is likely to be peripherally bound Chls possibly ligated to conserved His residues at positions 118 on the D1 and D2 proteins.

14.
Biochemistry ; 33(49): 14768-74, 1994 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-7993905

RESUMO

We have used spectrally photoselective femtosecond transient absorption spectroscopy on photosystem II reaction centers to show that there are at least two pools of chlorin molecules/states which can transfer excitation energy to P680, the primary electron donor in photosystem II. It has previously been shown that one chlorin pool equilibrates with P680 in 100 fs [Durrant et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636], and we report here the observation of energy transfer from a second more weakly coupled chlorin pool. The effect of the weakly coupled pool is to increase the apparent time constant for radical pair formation from 21 ps when P680 is selectively excited to 27 ps when the accessory chlorins are excited. We conclude that it is possible to observe both radical pair formation somewhat slowed by an energy transfer step and radical pair formation not limited by this slow energy transfer, depending upon which chromophores are initially excited. These observations provide evidence that when using photoselective excitation of P680, the observed 21 ps time constant for radical pair formation is not limited by a slow energy transfer step.


Assuntos
Transferência de Energia/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Cinética , Modelos Químicos , Complexo de Proteína do Fotossistema II , Porfirinas/metabolismo
15.
J Fluoresc ; 4(1): 57-9, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24233295

RESUMO

We report on the exciton dynamics in the J-aggregating dye 5,5', 6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine which is known readily to form J-aggregates, even at room temperature and at a low concentration. We performed a series of time-correlated singlephoton-counting experiments at different emission wavelengths and at different temperatures in the range between 1.5 and 125 K. Additionally, the temperature dependence of the relative fluorescence quantum yield was determined.

16.
Biochemistry ; 32(32): 8259-67, 1993 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-8347624

RESUMO

We have continued our studies of the primary photochemistry of isolated photosystem 2 reaction centers using femtosecond transient absorption spectroscopy. Experiments were performed over a wide range of excitation and probe wavelengths, using several data collection time scales. This has enabled us to resolve five different lifetimes ranging between 100 fs and 200 ps plus a nanosecond component. We demonstrate here and elsewhere [e.g., Durrant, J.R., Hastings, G., Joseph, D. M., Barber, J., Porter, G., & Klug, D. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 11632-11636] that the kinetic spectra associated with all but two of these lifetimes are clearly distinguishable. We have previously reported that a 21-ps lifetime is associated with pheophytin reduction [Hastings, G., Durrant, J. R., Hong, Q., Barber, J., Porter, G., & Klug, D. R. (1992) Biochemistry 31, 7638-7647]. In this paper, we show that it is possible to spectrally and temporally resolve stimulated emission from PS2 reaction centers with great accuracy and that this stimulated emission is largely unaffected by those kinetic components which are faster than 21 ps. The observation of a distinct stimulated emission band allows us to distinguish charge-separated states from chlorin singlet states. In this way, we are able to show that the proportion of charge-separated states prior to the 21-ps component is between 0% and 25%. We also show that the shape of the spectrum which we obtain for the state P680+Ph- is essentially invariant between 100 ps and 9 ns, and is the same as that previously reported for P680+Ph- by other researchers.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Clorofila/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Clorofila/química , Clorofila A , Fabaceae , Cinética , Complexos de Proteínas Captadores de Luz , Oxirredução , Plantas Medicinais , Espectrofotometria
17.
Proc Natl Acad Sci U S A ; 89(23): 11632-6, 1992 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-1454856

RESUMO

Photosystem II reaction centers have been studied by femtosecond transient absorption spectroscopy. We demonstrate that it is possible to achieve good photoselectivity between the primary electron donor P680 and the majority of the accessory chlorins. Energy transfer can be observed in both directions between P680 and these accessory chlorins depending on which is initially excited. After excitation of either P680 or the other chlorins, the excitation energy is observed to equilibrate between the majority of these pigments at a rate of 100 +/- 50 fs-1. This energy-transfer equilibration takes place before any electron-transfer reactions and must therefore be taken into account in studies of primary electron-transfer reactions in photosystem II. We also show further evidence that the initially excited P680 excited singlet state is delocalized over at least two chlorins and that this delocalization lasts for at least 200 fs.


Assuntos
Cloroplastos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Transferência de Energia , Fabaceae , Cinética , Complexo de Proteína do Fotossistema II , Plantas Medicinais , Análise Espectral
18.
Biochemistry ; 31(33): 7638-47, 1992 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-1510949

RESUMO

Photosystem two reaction centers have been studied using a sensitive femtosecond transient absorption spectrometer. Measurements were performed at 295 K using different excitation wavelengths and excitation intensities which are shown to avoid multiphoton absorption by the reaction centers. Analyses of results collected over a range of time scales and probe wavelengths allowed the resolution of two exponential components in addition to those previously reported [Durrant, J. R., Hastings, G., Hong, Q., Barber, J., Porter, G., & Klug, D. R. (1992) Chem. Phys. Lett. 188, 54-60], plus the long-lived radical pair itself. A 21-ps component was observed. The process(es) responsible for this component was (were) found to produce bleaching of a pheophytin ground-state absorption band at 545 nm and the simultaneous appearance of a pheophytin anion absorption band at 460 nm resulting in a transient spectrum which was that of the radical pair P680+Ph-. This component is assigned to the production of reduced pheophytin. A lower limit of 60% of the final pheophytin reduction was found to occur at this rate. Despite subtle differences in transient spectra, the lifetime and yield of this pheophytin reduction are essentially independent of excitation wavelength within the signal to noise limitations of these experiments. A long-lived species was also observed. This species is produced by those processes which result in the 21-ps component, and it has a spectrum which is found to be independent of excitation wavelength. This spectrum is characteristic of the primary radical pair state P680+Ph-. In addition, a 200-ps component was found which is tentatively assigned to a slow energy-transfer/trapping process. This component was absent if P680 was excited directly and is therefore not integral to primary radical pair formation. Overall, it is concluded that the rate of pheophytin reduction is limited to (21 ps)-1, even when P680 is directly excited.


Assuntos
Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Fabaceae/metabolismo , Cinética , Complexos de Proteínas Captadores de Luz , Oxirredução , Plantas Medicinais , Espectrofotometria/métodos , Fatores de Tempo
19.
Photosynth Res ; 34(3): 419-31, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24408837

RESUMO

A Photosystem two (PS II) core preparation containing the chlorophyll a binding proteins CP 47, CP 43, D1 and D2, and the non-chlorophyll binding cytochrome-b559 and 33 kDA polypeptides, has been isolated from PS II-enriched membranes of peas using the non-ionic detergent heptylthioglucopyranoside and elevated ionic strengths. The primary radical pair state, P680(+)Pheo(-), was studied by time-resolved absorption and fluorescence spectroscopy, under conditions where quinone reduction and water-splitting activities were inhibited. Charge recombination of the primary radical pair in PS II cores was found to have lifetimes of 17.5 ns measured by fluorescence and 21 ns measured by transient decay kinetics under anaerobic conditions. Transient absorption spectroscopy demonstrated that the activity of the particles, based on primary radical pair formation, was in excess of 70% (depending on the choice of kinetic model), while time-resolved fluorescence spectroscopy indicated that the particles were 91% active. These estimates of activity were further supported by steady-state measurements which quantified the amount of photoreducible pheophytin. It is concluded that the PS II core preparation we have isolated is ideal for studying primary radical pair formation and recombination as demonstrated by the correlation of our absorption and fluorescence transient data, which is the first of its kind to be reported in the literature for isolated PS II core complexes from higher plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...